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Abstract 

The aim of the paper is to detect and identify diagnostic symptoms based on parametric modeling with 

the use of system identification methods in the scope of monitoring techniques intended for rotating 

machinery under transient operational conditions. The development effort should focus on early warning 

methods in order to increase detectability and performance of machines operation. The diagnostic symptoms 

may prove to be a powerful tool for the decision support systems based on easier interpretable parameters of a 

parametric model. The paper discusses the experimental results obtained with the use of a laboratory test rig 

as well as data from conducted numerical simulations. 
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PARAMETRYCZNA METODA WCZESNEGO OSTRZEGANIA DLA MASZYN WIRNIKOWYCH 

 

Streszczenie 

Celem artykułu jest rozpoznanie symptomów diagnostycznych na podstawie modelowania 

parametrycznego z wykorzystaniem metod identyfikacji systemów w zakresie technik monitorowania 

przeznaczonych dla maszyn wirnikowych pracujących w przejściowych warunkach operacyjnych. Rozwój 

metody skupia się na wczesnym ostrzeganiu o pogorszeniu stanu technicznego w celu zwiększenia 

wykrywalności oraz polepszenia stanu operacyjnego maszyn. Symptomy diagnostyczne mogą okazać się 

użyteczne dla systemów wspomagania decyzji opartych na łatwo interpretowalnych parametrach modeli 

parametrycznych. Praca przedstawia wyniki eksperymentalne uzyskane przy pomocy aparatury laboratoryjnej 

jak również wyniki komputerowych symulacji numerycznych. 

 

Słowa kluczowe: maszyny wirnikowe, detekcja uszkodzeń, wczesne ostrzeganie, identyfikacja systemów 

 

1. INTRODUCTION 

 

The process of monitoring the state of rotating 

machinery needs the contribution from an early fault 

and malfunctions detection, in order to succeed in 

prevention of machine failure. Keeping the machine 

working point at the conditions that are the most 

optimal leads to downtime reduction of a machine, 

which results in economic loss reduction [6]. The 

diagnostic in industry conditions is difficult 

regarding many unidentified causes of current 

technical state. Figure 1 presents the typical complex 

way of malfunction propagation starting in the 

preload condition caused by e.g. accumulating 

contamination on the blades and resulted in many 

additional malfunctions, finally recognized as 

rubbing - dominant failure mode. 

The discussion of typical machinery 

malfunctions is presented in [12]. Parametric 

methods have been frequently used in the past for 

modal analysis [7-9]. Early attempts to parametric 

modeling and modal analysis in rotor dynamics are 

given in [13] including rotor-bearing system 

identification from operational and experimental 

data, hydrodynamic bearing identification apart a 

rotor system using a first principal linearized model 

with adjustable parameters corresponding to 

stiffness and damping of the oil film, and advanced 

studies on hydrodynamic bearings stability. 

 

 
Fig. 1. Exemplary way of malfunction propagation shown 

schematically [5]. 
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Over the last decades, various diagnosis 

methods have been developed in order to detect the 

faults of a rotating machinery. The usage of signal 

processing techniques, for instance Short Time 

Fourier Transform (STFT) [1] or Wavelet Transform 

(WT) [18] enables to deduce the diagnosis 

information from the vibrational signals. Wavelet 

transform method can decompose a signal into 

several time–frequency components. This method 

been broadly used in the industry to diagnose the 

rotating machinery, since it has the ability to process 

the non-stationary and nonlinear signals. Empirical 

mode decomposition (EMD) method can decompose 

a signal with use of self-adjusting process and create 

a series of intrinsic mode functions (IMF) [10]. 

Moreover, because the IMFs are obtained from the 

signal itself, EMD method is as well an adaptive 

signal processing method, which suits very well for 

the non-stationary and nonlinear signals. Although 

EMD method has been widely applied to various 

fields, it has many problems such as boundary 

effect, mode mixing and over- and undershoot 

problems [12]. 

Typical industrial solutions for fault detection 

of rotating machinery are based on nonparametric 

methods. In these solutions, amplitude, frequency, 

and phase contents of vibration signal are used to 

detect malfunctioning state of operation. The service 

specialists or experienced maintenance staff are 

responsible to choose relevant diagnostic symptoms 

and set appropriate warning/alarm thresholds, e.g. 

amplitude-phase acceptance regions. However, most 

of those techniques require an input of expertise and 

usually presence of an expert engineer whose 

knowledge is necessary to implement the method 

and to validate the results. Unfortunately, the expert 

is usually not available immediately when his 

presence is needed [17]. Therefore, there is a need 

for an easier approach, where relatively unskilled 

operators or maintenance stuff can make a decent 

decision regarding the health of the machine. When 

a rotating machinery is subjected to a fault, 

depending on the type of the fault, several 

characteristics of the vibration signal will display an 

obvious change with respect to the reference level. 

For some cases it is possible to show that those 

changes can form a specific pattern, called the fault 

signature of the machine [15]. That pattern could be 

described and therefore, the problem of rotating 

machinery early faults detection could be treated as 

a pattern recognition problem, that would be divided 

into the following steps: (i) vibration data 

acquisition, (ii) information extraction, (iii) change 

pattern recognition, (iv) identification of machines 

condition. 

The paper presents simulation and experimental 

study investigating the performance of parametric 

model techniques designed for the purpose of 

experimental vibration mode analysis of rotating 

machinery from the viewpoint of input and/or output 

system analysis. This technique is used in order to 

describe the dynamic behavior of the rotor supported 

one sliding bearing and by one hydrodynamic 

bearing in terms of natural frequencies and damping 

factors. The method aims to fulfill a need for an 

easier approach to rotating machinery diagnosis, 

where the expert engineering knowledge is 

necessary to set up warning/alarm thresholds at the 

beginning of machine operation and periodically in 

order to verify the correctness of the limits and 

operational condition of machinery. For the rest of 

the operational time, relatively unskilled operators or 

maintenance stuff Is supposed to monitor the change 

in parameters patterns change and make a decision 

regarding the health of the machine.  

 

3. NUMERICAL ROTOR-BEARING MODEL 

  

In order to provide simulation data, it was 

necessary to develop a numerical model, for which a 

MATLAB software was used. The mechanical 

model of considered system was described using a 

matrix differential equation: 
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In the equation (1) M(n,n) represents inertia 

matrix of translational and rotational vibrations, 

G(n,n) represents gyroscopic matrix of translational 

and rotational vibrations, D(n,n) represents damping 

matrix of translational and rotational vibrations and  

K(n,n) represents stiffness matrix of translational and 

rotational vibrations. The global damping matrix has 

been omitted in the calculations since the damping 

in the sliding bearing node resulting from the motion 

of the shaft in the fluid film is considered in this 

publication. Therefore, equations (1) and (2) yields 

to the following matrix equation: 
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One could expand the complex coordinates from 

equation (3) with 
nnnnnn jjyxz   ,  

obtaining: 
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The equation (4) presented above considers the 

coupled rotor motion in the translational and 

rotational coordinates as described in the literature 

[11,14]. The particular matrices from the equation 

(4) are formulated as follows: 
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where rotor stiffness is as follows 
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The physical bearing model is based on the 

Reynold’s equation and allows to analyze oil flow in 

a determined layer, comprising the balance equation 

for a fluid element and the equations of flow 

continuity. Reynold’s equation provides better 

insight into the dynamics of a rotor-bearing system 

specially under transient operation conditions when 

a nonlinear dynamic analysis need to be carried out. 

The basic form of Reynold’s equation involves the 

following assumptions: 

 

 lubricating oil is Newtonian fluid, 

 constant viscosity and density are specific to 

lubricating oil (isothermal process), 

 laminar flow occurs, 

 mass forces of lubricating oil particles are 

negligible, 

 shaft motion has a stable characteristic, and 

the shaft center is held in its position, 

 the shaft and the bearing bushing are not 

deformed; they ideally smooth/even and 

shaped in the form of cylinders, 

 pressure prevailing in the lubricating oil 

layer remains unchanged along the layer 

thickness. 

 

The forces that are generated by the fluid film can be 

denoted as 
yx FF ,  and are obtained by solving 

analytically the Reynold’s equation for the short 

bearing approximation: 
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which can be denoted as: 
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The presented models have been implemented 

in Matlab Simulink and parametrized according to 

the rotor test rig geometry, physical parameters and 

configuration. Table 1 presents used physical 

parameters. 

 

 

 

 



DIAGNOSTYKA, Vol. 17, No. 4 (2016)  

CZOP P., STASZEWSKI W., JABŁOŃSKI A.: Parametric early warning diagnostic method for rotating … 

 

52 

Table 1. Rotor properties belonging to models nodes. 

 Node 1 Node 2 

Imbalance radius [m] 0.035 0 

mass [g] 0.2 0 

phase [] 0 0 

Disk mass of disk [kg] 0.8 - 

Support clearance [m] - 220 

viscosity [Pas] - 0.002 

length L [m] - 0.03 

diameter D [m] - 0.051 

elevation [m] - 0 

 

3.1. Rotor-bearing system identification 

The considered rotor-bearing model can be 

represented by time-variant nonlinear adjustable-

parameter Ordinary Differential Equations (ODEs) 

model in the form of set of state-space equations 

formulated in the continuous-time domain: 
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where vector f(.) is a nonlinear, time-varying 

function of the state vector x(t) and the excitation 

vector u(t), while vector h(.) is a nonlinear 

measurement function; w(t) and v(t) are sequences 

of independent random variables and  denotes a 

vector of unknown parameters. The sum of squared 

errors is used as an error criterion. The model 

structure is defined by the function notation as 

follows: 

 

),,( nxnunyODE        (10) 

 

where nu is the number of inputs, ny is the number 

of outputs, and nx is the number of the state 

variables. 

The alternative rotor-bearing model 

representation is time-invariant, linear, discrete-time 

adjustable-parameter model. The models is 

represented by discrete-time G(z-1,i) and H(z-1,i) 

transfer functions, which represent the input-to-

output dynamics and the disturbance-to-output 

dynamics, respectively. These transfer functions are 

rational functions of the operator z-1 and discrete 

sample time i as follows [2] 
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where the polynomials A(z-1), B(z-1), C(z-1) define 

the structural symbol as follows: 

 

),,,( knCnBnAARMAX        (12) 

 

where nA, nB, nC are the polynomial orders and k is 

input-to-output model delay. Nevertheless, this 

feasibility study applies only AR(nA) model.  

The proposed diagnostics approach considers a 

time-invariant parametric autoregressive model to 

capture time-invariant dynamics of rotor-bearing 

system regarding its frequency and damping 

vibration modes under transient operation. The 

vibration response of has complex frequency content 

which in general consist of time-invariant and -

variant frequency components. There are three main 

types of frequency components. The first of these 

are the ‘exogenous modes’ corresponding to 

excitation harmonics (e.g. unbalance), which 

frequencies depend on a rotational speed. The 

second and third type of components are the natural 

frequencies.  

 

4. PROPOSED METHOD 

 

The proposed diagnostic methodology 

considers a model-based approach in detection of 

faulty conditions of a rotor system supported on 

hydrodynamic bearing and sliding bearing under 

transient operation conditions. The rotor model of 

considered dynamic system can be expressed as a 

transfer function 13: 

 

          12 )]()([),(  KsDMssH           (13) 

 

Parameter values of transfer function in the 

discrete time domain [16] can be estimated with the 

use of numerous algorithms 13. Structure of such a 

model consists of polynomials H(z-1) which are 

rational functions of the operator z-1 

 

e(i))Η(zy(i) 1                 (14) 

 

If the input is unknown u(i)0 then only time 

series model is determined. The roots of the 

denominator of G(z-1) transfer function (15) are the 

poles of a model. 

 

  0)(det 1 zAz nA ,   (15) 

 

The orders n of polynomials A(z-1) and are 

evaluated and properly selected from the 

measurements. The one of the most commonly 

applied test intended for determining the model 

order is the AIC method consisting in the 

minimization of Likelihood function [6]. 

The exact procedure used for the purpose of 

establishment of this diagnostic method can be 

described as: (i) implementation of a 

hydrodynamically supported rotor model in 

Matlab/Simulink environment to validate the method 

at a conceptual phase, (ii) development of a system 

identification method with use of Matlab/Simulink 

tools. 
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One of the possible post processing methods in 

case of eigenvalues extraction from a diagnostic 

model is monitoring of their trends vs. operation 

time. The core diagnostic algorithm can be 

formulated as follows: (i) identification of a 

diagnostic model based on the measurements, (ii) 

instantaneous extraction of eigenfrequencies and 

damping decay ratios from identified model 

parameters, (iii) poles placement monitoring on a 

complex plain within assumed warning/alarm 

regions.  

Symptoms of abnormal operating conditions are 

deviations in location of eigenfrequencies on a 

complex plain. The identified model may have dual 

representation in the form of a nonparametric model 

(power spectrum, transient response, Bode diagram, 

polar diagram) and parametric model (poles/zeros, 

model parameters). In other words, a parametric 

model is more general representation of a dynamical 

system and it can be converted into an arbitrary 

nonparametric system representation.  

A damping ratio and natural frequency are 

extracted from particular eigenfrequency value to 

provide direct physical meaning. If a transfer 

function model is involved, the eigenfrequencies are 

interpreted as poles and zeros.  Figure 2 visualizes 

the concept with two class of poles corresponding to 

reference (healthy) and faulty operating conditions 

(run condition and looseness condition). In reality, 

the change of class can happen evolutionary 

(pending malfunction) and is preceded by small 

deviation in poles locations. A sensitivity of the 

method depends on the measurement noise affecting 

model parameter estimation and modeling structure 

selection (model truncation).    

 
Fig. 2. Average poles placement as the 

estimate of rotating machinery condition. 

 

A faulty condition is detectable if pole 

coordinates cross coordinates of 2D region 

belonging to a given class. A fault isolation is 

performed if coordinates or membership metrics are 

known for each of distinguishing classes. 

Maintenance data and available plant specialist 

expertise are required to adjust scenarios of poles 

placement in case of malfunction occurrence and 

transfer them into diagnostic patterns.  

This stage requires subjective judgments since 

for a non-typical machinery the patterns can be a 

priori unknown. However, this is also the case if one 

uses currently available monitoring equipment. The 

alarm thresholds are adjusted based on the available 

domain knowledge, gathered measurement data, or 

simulation results [3]. Nevertheless, creation of 

scenarios in the proposed method can be supported 

by self-classification algorithms which preprocess 

the historical operational data (if available) by 

partitioning the search space and distributing the 

patterns in the resulting groups according to the 

values of their components. Uncertainty of pole 

location can be quantified using statistical approach 

based on the standard deviation ellipses obtained for 

each pole. There two types of uncertainty. The 

uncertainty of a pole estimation and uncertainty of 

class representative. The inference (fault isolation) 

algorithm may use uncertainty estimates to involve 

confidence intervals assigned to particular classes. 

The problem of finding which among a set of stored 

patterns are closest to a given test pattern is of great 

general interest. There are effective real time 

applicable methods for coding of the diagnostic 

scenarios and knowledge [14], e.g. nearest neighbor 

(NN) searching algorithm, fault or test trees, 

transition matrices, decision tables, diagnostic 

graphs, belief networks, real time expert systems.  

The fundamental advantages of the parametric 

model approach consist in a high accuracy of 

identification of short series of measuring data and 

possible representation of results in the form of 

nonparametric models. A parametric model can be 

converted into arbitrary system representation. High 

resolution in the frequency domain provides 

possibility of detection of slight frequency changes 

according to e.g. rub phenomena. Rub causes local 

abrupt frequency increase as a result of contact 

between rotor or blades and non-rotating parts. 

Parametric model approach allows saving of 

memory allocation indispensable for recording of a 

specific history of individual states of the 

machinery. When the circular buffer has reached the 

exit status, only a few model parameters are 

permanently recorded, but not all signals as 

waveforms. By archiving the model parameters 

only, there is a possibility of quasi-continuous data 

recording.  In this case system data can be collected 

at selected intervals (e.g. per 1 minute) at substantial 

lower usage of data media and computational 

requirements. Considering the 0.5X component 

occurring in a spectrum obtained based on relative 

vibration of journal in a hydrodynamic bearing, it 

can be clearly pointed out that the nonparametric 

approach to these problems appears to be not 

suitable. The frequency of the component is 

dependent on the type of bearing and the actual state 

of machinery (e.g. load, bearing clearances, oil 
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temperature). The change of 0.5X component 

according to amplitude and/or phase can indicate a 

given machinery state. Frequency variation of such a 

component is high and may change in the range of 

40% (0.4X) to 60% (0.6X) of 1X synchronous 

components. It is difficult to use fixed-parameter 

filter to select this frequency component. Most of 

diagnostic systems are not provided with the option 

for observing this component. Parametric model 

approach allows identifying the 0.5X component as 

a pole with a determined imaginary part 

(relationship with natural frequency) and real part 

(relationship with damping). 

Development of a reliable and efficient solution 

of the proposed method may bring numerous 

benefits to simplified rotating machinery monitoring 

systems. A parametric model-based system 

identification approach allows to detect and 

recognize malfunctions significantly easier than in 

case of a nonparametric signal-based method 

providing symptoms recommended for automatic 

diagnostic, e.g. pole placement on a complex plain. 

New approach is proposed due to the following 

advantages: (i) increased resolution in the frequency 

domain allows to detect slight frequency changes 

occurring in case of a rub or cracked rotors, (ii) 

decreased capacity required for storage of frequency 

data, (iii) possibility of dual representation of 

identified system in the form of a nonparametric 

model and parametric model. 

5. CASE STUDY 

 

Long-term monitoring of time-invariant 

frequency and damping components provides 

sufficient data sets to detect statistically significant 

deviation from the mean initial values assumed as 

the reference normal operating condition. A possible 

diagnostics approach is to collect the time-invariant 

frequency and damping components on a complex 

plain and follow their trends. The advantage of this 

approach is the semi-physical interpretation of poles 

placement indicating potential malfunctions. The 

paper considers only transient conditions for 

bearing-rotor systems, e.g. steam turbines, turbo 

charges, engine crank-shafts. However, the 

conclusions and developed method is applicable to 

other rotating machinery equipped with rolling 

bearings and data represented, i.e. displacement, 

velocity or acceleration measurements.  

Currently, computational models are very 

common and useful in order to provide a reliable, 

relatively quick and cheap solutions for real world 

problems. However, those kinds of simulations 

usually have some kind of implemented uncertainty 

and inaccuracy resulting from used assumptions and 

simplifications within the process of model creation. 

Therefore, there is still a need for model validation. 

Usually, models are validated by a comparison of 

simulated data to experimental results from well-

known operating points and that is why authors used 

Fig. 3. Poles placement in the case of reference and faulty conditions for the simulated data (left) and 

experimental data (right) including confidence ellipses. 
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a test rig in order to obtain experimental data needed 

for model validation. Due to the fact, that considered 

machinery is subjected to the largest stress and 

fatigue under transient operational conditions rather 

in the steady-state, this paper focuses only on 

transient conditions.  

 

5.1. Experimental validation 

 The RK-4 Rotor test rig [2] used in this 

study was manufactured by Bently Nevada is shown 

in the Figure 4. The experimental rotor-bearing 

system consists of speed controller, electric motor, 

speed controller transducer, elastic coupling, phase-

maker transducer (once per turn), laterally rigid with 

pivoting brass oil bearing, steel shaft, four proximity 

eddy current transducers mounted in XY orthogonal 

configuration respectively, rotor disk of mass 0.8 kg 

with some unbalance, four radial spring supporting 

system, oil (T-10) lubricated bearing and four-port 

oil supply. The motor provides the experimental test 

rig with rotation torque that allows for a 

rotordynamic investigation. A flexible motor 

coupling connects the motor to the shaft, allowing 

for small axial and radial movement of the shaft. 

The test stand also comes with an adjustable base 

which allows for axial movement of system 

components to achieve different system 

configurations. The base of the test rig allows for 

axial flexibility of the location of the disk and the 

hydrodynamic bearing making it possible for a 

vertical Y axis and a horizontal X axis orientation. A 

disk is mounted on a defined location on the shaft 

near the middle of the bearing span of a bushing and 

the considered bearing. Two types of sensors are 

used in this experiment to monitor position change 

of the rotor. One is a pair of eddy current position 

probes located near the disk, oriented vertically and 

horizontally. Data from these probes are collected 

using an DSPi (Dynamic Signal Processing 

Instrument) and a computer. The other is a pair of 

variable reluctance probes located on a sensor ring 

on the bearing. 

5.2. Numerical validation 

The exact rotor model consists of 17 nodes and 

16 rotor sections and has been tuned to the 

measurements of a test rig. This test rig consists of a 

flexible rotor supported by a single 

sliding/hydrodynamic bearing characterized by 

physical. The model provides only qualitative 

accuracy which is essential to understand placement 

of eigenvalues’ trajectories during transient 

operating conditions. The simulation provides a 

basis for diagnostic algorithm development. In order 

to simplify the analysis of eigenvalues’ patterns, the 

analysis was carried out using the reduced model, 

where the sliding bearing is massless, and only 

hydrodynamic bearing and the disk have mass. Due 

to those simplifications, the sliding bearing can be 

represented as a rigid support and will not be 

consider in further simulations. Figure 5 shows the 

discrete representation of simplified model used for 

numerical calculations. 

 

 
Fig. 4. R4 ROTOR KIT [2] with:1-oil pump assembly, 2-

oil bearing assembly, 3-rotor kit shaft with oil bearing 

journal, 4-preload frame. 

 
Fig. 5. Simplified rotor-bearing model discrete 

representation: 1 – rotor disk, 2 – hydrodynamic bearing. 

 

5.3 Conclusions 

Preliminary research based on analytical, 

numerical and laboratory model [2] provided 

promising results 4. The analytical solution provided 

preliminary insight into a linearized diagnostic 

model. The numerical simulations allowed the 

prediction of rotor behavior in the case of considered 

malfunctions that have been simulated on the test-rig 

and others not included for physical experiment. 

Transient operating conditions were simulated. 

During identification experiments ARX(2,1,1) 

model was used. The model parameters were 

transformed into zeros/poles representation of a 

dynamic system. As the input to ARX model the 

phase signal was assumed of the amplitude that 

equals one. Relative vibrations of shaft at 

hydrodynamic bearing [4] in horizontal and vertical 

direction were assumed as the ARX model output. 

As a result of identification several sets of ARX 

model parameters were obtained for each type of 

fault rotor condition. Next, the model parameters 

were transformed to zero/pole representation (Eq. 



DIAGNOSTYKA, Vol. 17, No. 4 (2016)  

CZOP P., STASZEWSKI W., JABŁOŃSKI A.: Parametric early warning diagnostic method for rotating … 

 

56 

10,11). The identification procedure was repeated 

several times for each simulating case of 

malfunction to asset dispersion in population. 
 The method procedure can be defined  as 

follows: (i) the model is represented by a transfer 

function with arbitrary assumed orders of 

numerators and denominators, (ii) identification is 

performed separately in a vertical and horizontal 

plain of the rotor axis, (iii) system is considered as a 

finite-degree and number of conjugate poles 

corresponding to the number of vibration modes to 

be trunked to the most essential ones, (iv) 

malfunctions affect models’ parameters in result of 

significant physical/geometrical nonlinearities and 

structural changes, e.g. nonlinear stiffness, turbulent 

oil flow through restrictions, looseness, wear.  

 
Table 2. Average poles placement based on simulation 

(mean value  standard deviation) 

Operating 

conditions 

Direction Average 

damping 

[Hz] 

Average 

frequency 

[Hz] 

Reference 

horizontal -7.011  

1.231 

44.034  

0.899 

vertical -6.466  

1.435 

43.515  

1.329 

Rub 

horizontal -1.167  

0.455 

45.339  

0.324 

vertical -0.891  

0.187 

45.786  

0.486 

Looseness 

horizontal -0.730  

0.362 

41.016  

1.148 

vertical -0.544  

0.239 

40.775  

1.347 

 

In the investigated case, the looseness condition 

causes a significant drop of average natural 

frequency; from 44.03 Hz to 41.02 Hz and from 

43.52 Hz to 40.76 Hz for the horizontal and the 

vertical direction respectively. The average decay 

ratio also decreased from -7.01 to -0.73 for 

horizontal direction and from -6.47 to -0.54 for 

vertical direction (Figure 3). The second part of the 

conducted test was intended to show the influence of 

the rub condition on the bearing stability and 

stiffness. The average natural frequencies in 

horizontal and vertical direction changed from 44.03 

Hz to 45.34 Hz and from 43.52 Hz to 45.79 Hz 

respectively. The average decay ratio decreased 

from -7.01 to -1.17 for the horizontal direction and 

from -6.47 to -0.89 in the vertical direction. 

 

 

 

 

 

 

 

 

Table 3. Average poles placement based on experiment 

(mean value  standard deviation) 

Operating 

conditions 

Direction Average 

damping 

ratio [Hz] 

Average 

frequency 

[Hz] 

Reference 

horizontal -9.047  

1.054 

44.024  

0.755 

vertical -12.223  

1.615 

42.711  

3.662 

Looseness 

horizontal -0.805  

0.055 

38.883  

0.169 

vertical -0.786  

0.215 

38.249  

0.346 

Rub 

horizontal -1.113  

0.347 

46.372  

1.113 

vertical -0.748  

0.251 

47.015  

0.947 

 

Table 2 and Table 3 show that both 

malfunctions can be easily detected and isolated 

based on the poles placement. The proposed method 

allows to identify typical malfunctions – the 

looseness conditions and the condition of rub. One 

can detect the first one by observation of drop of 

average natural frequency of considered system 

about 2-5 Hz (5-10 %) and drop of the damping ratio 

by about 5-7 (40-50 %). The other one appears by 

increase of natural frequency by about 2-3 Hz (5-

7%) and decrease of damping ration by about 5-6 

(40-45 %). One could also observe the behavior or 

confidence ellipses in time since they can indicate 

the quality of diagnostic process, the smaller the 

ellipses, the more accurate analysis is. If ellipses 

would increase it means, that the quality decreases. 

Due to the fact that only simplified model of a 

rotor-bearing system was used, obtained results from 

the simulations and conducted measurements differ 

in poles locations. The initial assumption was that 

the model is supposed to provide only qualitative 

accuracy which is essential to understand the 

location of poles for considered malfunctions. 

Therefore, the simulation provides only a basis for 

development of diagnostic algorithm. The 

observation of trend of poles location may give a 

better insight of malfunction development over 

operational time. 

Analyzing the arrangement of poles in the case 

of looseness conditions, it is possible to infer the 

following conclusions. A system model is stable; all 

the poles are on the left complex semi-plane. A 

decreased stability margin is clearly visible as far as 

the displacement of poles towards to the right of a 

complex plane. Due to the introduction of high-

valued backlash during the mounting of 

hydrodynamic bearings upon the foundation (the 

mounting rail), a marked decrease of the damping to 

zero (approx. –0.4 [1/s]) was observed. The natural 

frequency also decreased from 260 rad/s up to 240 

rad/s. High amplitude vibration in the system is 

generated at lower natural frequencies. The system 
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has lost its anisotropy in the horizontal and vertical 

directions (Fig. 4). In the consequence of looseness 

similar natural frequencies may be registered both in 

vertical and horizontal directions. 

 

6. SUMMARY 

 

As a result of intensive laboratory and numerical 

experiments the parametric approach based on ARX 

model was proposed. Selected aspects of testing 

methods for rotating machines under transient 

operating conditions were discussed in the paper. A 

mathematical model of the rotating machine was 

also utilized to verify physical test result [3].  

The proposed diagnostic method allows for 

setting the thresholds corresponding to normal and 

malfunctioned conditions evaluated by maintenance 

or service provider staff. It allows to classify the 

malfunctioned machinery to one of a few predefined 

defects based on eigenvalues patterns which are 

represented and visualize on a complex plain. The 

malfunctions are assigned to specific poles patterns 

based on historical data (previously collected data 

sets and calculated trends of parameters change) and 

experts’ recommendations. When current poles 

pattern is out of the reference specification a fault 

isolation procedure has been initialized to detect 

malfunctions, i.e. identify where is the problem, and 

what caused the problem. 

The presented method of malfunction risk 

assessment based on eigenvalue patterns shows that 

group of basic malfunctions, i.e. rub and looseness 

can be detected while the machine is operating. The 

detection is related to the change of poles location – 

natural frequency and damping ratio. The presented 

method confirms the idea, that relatively unskilled 

operators or maintenance stuff could monitor the 

change in poles placement patterns and make a 

meaningful decision regarding the health of the 

machine. Of course, it is not possible to exchange 

the skilled engineers, they knowledge and expertise 

will still be necessary in order to periodically verify 

the thresholds and to make a detailed diagnosis 

regarding the actual state of the machinery.  

The paper considers only transient conditions for 

bearing-rotor systems, e.g. steam turbines, turbo 

charges, engine crank-shafts. However, the 

conclusions and developed method is applicable to 

other rotating machinery equipped with rolling 

bearings and data represented, i.e. displacement, 

velocity or acceleration measurements.  

Summarized, parametric model approach 

provides increase of frequency resolution, 

elimination of disturbances, and easier stability 

recognition. It was shown that parameters of 

AR/ARX and similar models can be applied in early 

warning diagnostic solutions. Introduced aspect of 

continuously developing machinery diagnostics 

regarding parametric approach is a first step to 

design in the future fully model-based diagnostic 

method. This diagnostic is a very common within a 

few last years, however practical solutions are 

difficult to apply and not present in industry. 

 

NOMENCLATURE 

1i  – imaginary unit, 

t, i – continuous and discrete time domains, 

s, z – Laplace and Z transformation operator, 

 - rotating speed [1/s], 

L - total rotor length [m] or length of the journal 

[m], 

x, y - lateral motion coordinates [m], 

z - coordinate along the shaft axis [m], 

,  - dx/dz and dy/dz coordinates in angular motion 

[rad], 

Z,  - complex translational and rotational vibrations 

[m], 

n - the number of degrees of freedom [-], 

w(nx1) - response vector of translational and 

rotational vibrations, 

u(nx1) - excitation vector of translational and 

rotational vibrations,  

M(nxn) - inertia matrix of translational and rotational 

vibration, 

G(nxn) - gyroscopic matrix of translational and 

rotational vibrations, 

D(nxn) - external damping matrix of translational and 

rotational vibrations, 

K(nxn) - stiffness matrix of translational and rotational 

vibrations, 

Ks(nxn) - support stiffness matrix of translational and 

rotational vibrations, 

d - damping coefficient of a fluid film [Ns/m], 

k0 - stiffness coefficients of a fluid film [N/m], 

c - bearing clearance [m], 

µ - dynamic viscosity [Pas], 

 - current angular position of the journal center 

[rad], 

h - dimensional oil gap (oil film thickness) [m], 

R - journal radius [m], 

f(.) - nonlinear function [N], 

m - mass [kg], 

IT, IP – transverse and polar inertia moment [kgm2], 

I - area moment [m4], 

l - length of shaft section [m], 

d - diameter of shaft section [m], 

 - density [kg/m3], 

E - Young’s modulus,  

Fx,Fy - bearing forces [N], 

x, y - current position of journal center [m], 

x0, y0 - linearized position of journal center [m], 

Abbreviations 

FFT - Fast Fourier Transformation 

ARX - Auto Regressive with eXogenous input 

STFT - Short Time Fourier Transform 

WT – Wavelet Transform 

EMD - Empirical Mode Decomposition 

IMF – Intrinsic Mode Function 
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